Radial Two Weight Inequality for Maximal Bergman Projection Induced by a Regular Weight

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-Weight Orlicz Type Integral Inequalities for the Maximal Operator

p A v = u  , (1) holds for t = ) t ( = ) t (   , but not if 1 = p . Also for each   < p 1 there exists a pair p A ) v , u (  so that (1) fails in the special case t = ) t ( = ) t (   [3, p. 395]. In these exceptional cases we have a weak type inequality. An excellent reference is the book by J.Garcia-Cuerva and J.L.Rubio de Francia [3]. We refer the reader interested in the current stat...

متن کامل

Ring geometries, two-weight codes, and strongly regular graphs

It is known that a linear two-weight code C over a finite field Fq corresponds both to a multiset in a projective space over Fq that meets every hyperplane in either a or b points for some integers a < b , and to a strongly regular graph whose vertices may be identified with the codewords of C . Here we extend this classical result to the case of a ring-linear code with exactly two nonzero homo...

متن کامل

a cauchy-schwarz type inequality for fuzzy integrals

نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.

15 صفحه اول

Maximal Flat Antichains of Minimum Weight

We study maximal families A of subsets of [n] = {1, 2, . . . , n} such that A contains only pairs and triples and A 6⊆ B for all {A,B} ⊆ A, i.e. A is an antichain. For any n, all such families A of minimum size are determined. This is equivalent to finding all graphs G = (V,E) with |V | = n and with the property that every edge is contained in some triangle and such that |E| − |T | is maximum, ...

متن کامل

Reducing rank-maximal to maximum weight matching

Given a bipartite graph G(V,E), V = A ∪̇B where |V | = n, |E| = m and a partition of the edge set into r ≤ m disjoint subsets E = E1 ∪̇E2 ∪̇ . . . ∪̇Er, which are called ranks, the rank-maximal matching problem is to find a matching M of G such that |M ∩ E1| is maximized and given that |M ∩ E1| is maximized, |M ∩ E2| is also maximized, and so on. Such a problem arises as an optimization criteria ov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Potential Analysis

سال: 2020

ISSN: 0926-2601,1572-929X

DOI: 10.1007/s11118-020-09838-4